∵在等比数列{an}中,a1=512,公比q=-
,∴an=512?(?1 2
)n?1,则|an|=512?(1 2
)n?1. 1 2
令|an|=1,得n=10,∴|Πn|最大值在n=10之时取到,因为n>10时,|an|<1,n越大,会使|Πn|越小.
∴n为偶数时,an为负,n为奇数时,an为正.
∵Πn=a1a2…an,∴Πn 的最大值要么是a10,要么是a9.
∵Π10 中有奇数个小于零的项,即a2,a4,a6,a8,a10,则Π10<0,
而 Π9 中有偶数个项小于零,即a2,a4,a6,a8,故 Π9 最大,
故答案为 Π9.