你说的是集合与简易逻辑吧!!!
集合与简易逻辑
内容提要
一、集合概念及运算
一、集合的基本概念及运算
1.集合与元素:一般地,某些指定的对象集在一起就成为一个集合,也简称集,通常用大写字母A、B、C…表示.集合中的每一对象叫做集合的一个元素,通常用小写字母a、b、c…表示
2.集合中元素的性质:确定性、互异性、无序性
二、集合与集合之间的关系
子集:如果x∈A,则x∈B,则集合A是集合B的子集
交集:
并集:
补集:设S是一集合,A是S的一子集,由S中所有不属于A的元素组成的集合,叫做集A在全集S中的补集(或余集),记作CSA.
三、运算性质
1.交集的运算性质
A∩B=B∩A,A∩A=A,A∩Φ=Φ,A B A∩B=A
2.并集的运算性质
A∪B=B∪A,A∪A=A,A∪Φ=A,A B A∪B=B
3.补集的运算的性质
CS(CSA)=A,CSΦ=S,CS(A∩B)=(CSA)∪(CSB),CS(A∪B)=(CSA)∩(CSB)
四、有限集合的子集个数公式
设有限集合A中有n个元素,则A的子集个数有:C0n+C1n+C2n+…+Cnn=2n个,其中真子集的个数为2n-1个,非空子集个数为2n-1个,非空真子集个数为2n-2个
二、绝对值不等式及一元二次不等式的解法
1、绝对值不等式
①|f(x)|<a (a>0)
②|f(x)|<g(x)
③|f(x)|>g(x)
2、二次不等式解法
三、简易逻辑、充要条件、反证法
1.命题的判断
可以判断真假的语句叫做命题;“或”、“且”、“非”这些词叫做逻辑连结词
判断复合命题的真假依据真值表
注:常见关键词的否定
2.四种命题
在两个命题中,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题
在两个命题中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题
在两个命题中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题
3.充要条件
若A=>B,则A是B的充分条件,B是A的必要条件
若A=>B且B=>A,则A是B的充要条件
4.反证法
①反设:假设命题的结论不成立
②归谬:从假设出发,推理,得出矛盾
③结论:判断假设不正确,肯定命题正确
书上又