求三角形ABC的面积。 (1)已知:A(-4,-5),B(-2,0),C(4,0)

(2)已知:A(-5,4)B(-2,-2),C(0,2)
2025-12-13 03:12:50
推荐回答(5个)
回答1:

向量AB=(2,5)所以向量AB的模=根号下29
向量AC=(8,5)所以向量AC的模=根号下89
cosA=(向量AB 乘以 向量AC)/(向量AB的模 乘以 向量AC的模)
sinA=根号下1-(cosA)^2
S=(向量AB的模 乘以 向量AC的模 乘以 sinA)/2

回答2:

S=BC乘以AC乘以sinC
BC=6 AC=根号下89
用余弦定理求cosC 再算出sinC
代入公式就行了

回答3:

1/2×5×6=15,把图画出来就可以看出了

回答4:

第一小题三角形ABC的面积为15,第二小题则为12。你可以画个坐标轴,然后把点标上,遇到无法直接看出底和高的,可以先算出一个规则的梯形(包含三角形)的面积,然后把多余的面积减去。

回答5:

15